Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
J Infect Dis ; 226(8): 1396-1400, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2077785

ABSTRACT

After >2 years of the coronavirus disease 2019 (COVID-19) pandemic, immunoglobulins (IGs) contain highly potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies, based on the large proportion of United States (US) plasma donors who have gone through COVID-19 or vaccination against the virus. Neutralization of Omicron SARS-CoV-2 by antibodies generated after non-Omicron infection or vaccination has been lower though, raising concerns about the potency of IG against this new virus variant. Also, as plasma collected in the US remains the main source of IG, the neutralization of SARS-CoV-2 for plasma collected elsewhere has been less well studied. Here, we confirm Omicron neutralization by US as well as European Union plasma-derived IG lots.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/immunology , Antibodies, Viral , COVID-19/immunology , Europe , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus , United States
3.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1989529

ABSTRACT

Background During the current pandemic, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralization capacity of the immunoglobulin (IG) supply has changed from undetectable for lots manufactured from plasma collected before the pandemic, to now highly potent. Objective As antibodies induced by exposure to or vaccination against coronaviruses were shown to be cross-coronavirus reactive, it was of interest to understand whether SARS-CoV-2 neutralizing antibodies would result in increased functional IG potency also against seasonal coronaviruses. Methods IG lots from US plasma collected before SARS-CoV-2 emerged and collected during the pandemic were analyzed by live virus neutralization assay for SARS-CoV-2 and seasonal human coronaviruses (HCoVs) NL63 and OC43 neutralizing antibody content. Results Pre-pandemic IG showed no SARS-CoV-2 neutralizing antibody titers. However, IG lots produced from plasma of post-coronavirus disease 2019 (COVID-19) individuals exhibited robust anti-SARS-CoV-2 potency (1,267 IU/ml) which further increased ~4-fold in pandemic IG lots reaching a mean titer of 5,122 IU/ml. Nonetheless, neutralizing antibody potencies to the HCoVs NL63 and OC43 remained stable over this period, i.e., have not increased correspondingly. Conclusion The present results show that cross-coronavirus-reactive antibodies are not cross-neutralizing, i.e., SARS-CoV-2 antibodies do not neutralize seasonal coronaviruses NL63 and OC43.

4.
Commun Med (Lond) ; 1: 13, 2021.
Article in English | MEDLINE | ID: covidwho-1860406

ABSTRACT

Background: In spring 2020, at the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Europe, we set up an assay system for large-scale testing of virus-specific and neutralising antibodies including their longevity. Methods: We analysed the sera of 1655 adult employees for SARS-CoV-2-specific antibodies using the S1 subunit of the spike protein of SARS-CoV-2. Sera containing S1-reactive antibodies were further evaluated for receptor-binding domain (RBD)- and nucleocapsid protein (NCP)-specific antibodies in relation to the neutralisation test (NT) results at three time points over six months. Results: We detect immunoglobulin G (IgG) and/or IgA antibodies reactive to the S1 protein in 10.15% (n = 168) of the participants. In total, 0.97% (n = 16) are positive for S1-IgG, 0.91% (n = 15) were S1-IgG- borderline and 8.28% (n = 137) exhibit only S1-IgA antibodies. Of the 168 S1-reactive sera, 8.33% (n = 14) have detectable RBD-specific antibodies and 6.55% (n = 11) NCP-specific antibodies. The latter correlates with NTs (kappa coefficient = 0.8660) but start to decline after 3 months. RBD-specific antibodies correlate most closely with the NT (kappa = 0.9448) and only these antibodies are stable for up to six months. All participants with virus-neutralising antibodies report symptoms, of which anosmia and/or dysgeusia correlate most closely with the detection of virus-neutralising antibodies. Conclusions: RBD-specific antibodies are most reliably detected post-infection, independent of the number/severity of symptoms, and correlate with neutralising antibodies at least for six months. They thus qualify best for large-scale seroepidemiological evaluation of both antibody reactivity and virus neutralisation.

5.
Front Med (Lausanne) ; 9: 822316, 2022.
Article in English | MEDLINE | ID: covidwho-1731799

ABSTRACT

In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.

6.
J Infect Dis ; 226(8): 1357-1361, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-1706826

ABSTRACT

Immunoglobulin lots (N = 176) released since March 2020 were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies, with first positive results for September 2020 lots (mean, 1.7 IU/mL; 46% of lots positive). From there, values steadily increased, in correlation with the cumulative coronavirus disease 2019 (COVID-19) incidence, to reach a mean of 31.2 IU/mL and 93% of lots positive by January 2021. Extrapolating the correlation, immunoglobulins could reach an anti-SARS-CoV-2 potency of approximately 345 IU/mL by July 2021. At that stage, prophylactic immunoglobulin treatment for primary/secondary immunodeficiency could contain similar doses of anti-SARS-CoV-2 as convalescent plasma that is used for treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive/methods , Immunoglobulins, Intravenous/therapeutic use , Pandemics/prevention & control , COVID-19 Serotherapy
7.
NPJ Vaccines ; 7(1): 22, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1705119

ABSTRACT

SARS-CoV-2 neutralizing antibodies have been suggested to reflect the efficacy of COVID-19 vaccines. This study reports the direct comparison of the SARS-CoV-2 neutralizing antibody response elicited by a protein- (NVX-CoV2373), an mRNA- (Comirnaty), and a vector-based (Vaxzevria) COVID-19 vaccine, calibrated against the WHO international SARS-CoV-2 antibody standard, and further supports the use of neutralizing antibody levels as a correlate of protection.

8.
J Infect Dis ; 224(10): 1707-1711, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1541544

ABSTRACT

From September 2020, some immunoglobulin lots from US plasma contained neutralizing antibodies against the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Paralleled by the increasing numbers of post-coronavirus disease 2019 (COVID-19) donors, immunoglobulin lot antibody positivity increased to 93% by January 2021, at a mean titer of approximately 30 IU/mL. The correlation predicted that anti-SARS-CoV-2 potency would reach 345 IU/mL by July 2021. In addition to post-COVID-19 donors, the rapidly increasing number of plasma donors vaccinated against COVID-19 resulted in a mean antibody titer of >600 IU/mL in July 2021 immunoglobulin lots, with SARS-CoV-2 antibody titers for several lots even higher than those of earlier produced hyperimmune globulin products.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , COVID-19 Serotherapy
9.
EBioMedicine ; 70: 103539, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356205

ABSTRACT

BACKGROUND: In recent months numerous health care professional acquired COVID-19 at the workplace resulting in significant shortages in medical and nursing staff. We investigated how prior COVID-19 affects SARS-CoV-2 vaccination and how such knowledge could facilitate frugal vaccination strategies. METHODS: In a cohort of 41 healthcare professionals with (n=14) and without (n=27) previous SARS-CoV-2 infection, we assessed the immune status before, during and after vaccination with BNT162b2. The humoral immune response was assessed by receptor binding domain ELISA and different SARS-CoV-2 neutralisation assays using wildtype and pseudo-typed viruses. T cell immunity against SARS-CoV-2 surface and nucleocapsid peptides were studied using interferon-γ release assays and intracellular flow cytometry. Vaccine-related side effects were captured. FINDINGS: Prior COVID-19 resulted in improved vaccine responses both in the B and T cell compartment. In vaccine recipients with prior COVID-19, the first vaccine dose induced high antibody concentrations comparable to seronegative vaccine recipients after two injections. This translated into more efficient neutralisation of virus particles, even more pronounced than expected from the RBD ELISA results. Furthermore, T cell responses were stronger in convalescents and particularly strong against the SARS-CoV-2 nucleocapsid protein. INTERPRETATION: Herein, we corroborate recent findings suggesting that in convalescents a single vaccine dose is sufficient to boost adequate in vitro neutralisation of SARS-CoV-2 and therefore may be sufficient to induce adequate protection against severe COVID-19. New spike mutated virus variants render the highly conserved nucleocapsid protein - eliciting strong SARS-CoV-2 specific T cell immunity - an interesting additional vaccine target. FUNDING: Christian Doppler Research Association, Johannes Kepler University Linz.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Health Personnel , Humans , Immunity, Humoral/immunology , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
10.
Transfusion ; 61(4): 1141-1147, 2021 04.
Article in English | MEDLINE | ID: covidwho-1093801

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) convalescent individuals carry antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that, through a plasma donation, can be used as a potential therapeutic either in direct transfusion or for the manufacture of hyperimmune globulin (HIG). The success of such interventions depends on the antibody potency in such plasma donations, but little information on the collection of potent units is currently available. STUDY DESIGN AND METHODS: A total of 8749 plasma units, collected from April until September 2020 from first-time U.S. COVID-19 convalescent plasma donors, were characterized for SARS-CoV-2 immunoglobulin G (IgG) antibodies by Abbott chemiluminescent microparticle immunoassay (CMIA). The period between COVID-19 onset until donation and donor age, ethnicity, sex, and COVID-19 severity were evaluated against the obtained signal (index S/C). RESULTS: A marked decrease in mean index S/C was seen over the plasma collection period surveyed, which was significantly correlated to decreases in mean plasma donor age (p < .0001; R2 = .726) and percentage of donations obtained from COVID-19 convalescent patients who had been hospitalized (p = .001; R2 = .4426). The highest titer plasma units were obtained soon after convalescence from COVID-19 patients who required hospitalization, from advanced age donors, and from Black/African/Hispanic American versus White/Caucasian ethnicities, whereas there was no effect of donor sex on the values obtained with the Abbott CMIA. CONCLUSION: Since the onset of the pandemic, the average SARS-CoV-2 IgG values of first-time U.S. COVID-19 convalescent plasma donations have significantly dropped, mainly due to donations from progressively younger aged donors who tend to experience less severe COVID-19.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/therapy , Convalescence , Pandemics , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/epidemiology , Female , Humans , Immunization, Passive , Longitudinal Studies , Male , Middle Aged , United States/epidemiology , COVID-19 Serotherapy
11.
Transfusion ; 61(1): 12-16, 2021 01.
Article in English | MEDLINE | ID: covidwho-796048

ABSTRACT

BACKGROUND: Transfusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma is a promising treatment for severe coronavirus disease 2019 (COVID-19) cases, with success of the intervention based on neutralizing antibody content. Measurement by serologic correlates without biocontainment needs as well as an understanding of donor characteristics that may allow for targeting of more potent donors would greatly facilitate effective collection. STUDY DESIGN AND METHODS: One hundred convalescent plasma units were characterized for functionally active SARS-CoV-2 neutralizing antibodies, as well as for SARS-CoV-2 binding antibodies, with the intention to establish a correlation between the functionally more relevant neutralization assay and the more accessible enzyme-linked immunosorbent assay (ELISA). Donor demographics such as COVID-19 severity, age, and sex were correlated with antibody titers. RESULTS: A mean neutralization titer 50% of 230 (range, <8-1765) was seen for the 100 convalescent plasma units, with highly significant (P < .0001) yet quantitatively limited (R2 = 0.2830) correlation with results of the ELISA. Exclusion of units with particularly high titers (>500) from analysis improved correlation (R2 = 0.5386). A tendency of higher-titer plasma units from donors with increased disease severity, of advanced age, and of male sex was seen, yet the functional relevance of this difference is questionable. CONCLUSION: The ELISA-based correlation to neutralization titer enabled a threshold proposal that could be used to eliminate lower-titer units from the clinical supply for COVID-19 treatment. Disease severity may be associated with the development of higher titers of neutralizing antibodies, although larger case numbers will be needed for additional confirmation.


Subject(s)
COVID-19/therapy , COVID-19/virology , SARS-CoV-2/pathogenicity , Blood Donors , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive/methods , SARS-CoV-2/immunology , COVID-19 Serotherapy
12.
J Infect Dis ; 222(12): 1960-1964, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-780405

ABSTRACT

The 2020 SARS-CoV-2 pandemic is caused by a zoonotic coronavirus transmitted to humans, similar to earlier events. Whether the other, seasonally circulating coronaviruses induce cross-reactive, potentially even cross-neutralizing, antibodies to the new species in humans is unclear. The question is particularly relevant for people with immune deficiencies, as their health depends on treatment with immunoglobulin preparations that need to contain neutralizing antibodies against the pathogens in their environment. Testing 54 intravenous immunoglobulin preparations, produced from plasma collected in Europe and the United States, confirmed highly potent neutralization of a seasonal coronavirus; however, no cross-neutralization of the new SARS-CoV-2 was seen.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunoglobulins, Intravenous/immunology , SARS-CoV-2/immunology , COVID-19/virology , Cross Reactions , Europe , Humans , Neutralization Tests , Plasma/immunology , United States
13.
Biologicals ; 68: 122-124, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-733947

ABSTRACT

With the pandemic emergence of SARS-CoV-2, the exposure of cell substrates used for manufacturing of medicines has become a possibility. Cell lines used in biomanufacturing were thus evaluated for their SARS-CoV-2 susceptibility, and the detection of SARS-CoV-2 in culture supernatants by routine adventitious virus testing of fermenter harvest tested.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/metabolism , Pneumonia, Viral/metabolism , Virus Replication , Animals , Antiviral Agents/pharmacology , Biological Factors/pharmacology , CHO Cells , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Cricetulus , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL